
Image Reconstruction from
Non-Uniformly Sampled Spectral Data

Alfredo Nava-Tudela

May 14, 2009

Abstract

In this project we study and implement software to reconstruct images in the spatial
domain from non-uniformly sampled data in the spectral domain. We study existing
non-uniform fast Fourier methods and understand their use in image reconstruction.
Also, we fit one of these methods to a technique previously developed to reconstruct
images from uniformly sampled spectral data. In this project we also create a database
of synthetic non-uniform spectral data to test the algorithms developed herein. We
deliver Matlab code that implements the techniques described in this document.

1 Problem statement

In this project we address the following problem. Given a discrete set S of non-
uniformly distributed spectral data in the R̂2 plane, find a step-wise function in the
class of functions CN whose Fourier transform best approximates S. The set CN is
defined as follows

CN =

f : R2 → R
∣∣∣ f(x, y) =

N−1∑
k,l=0

fk,lΠ(x− k)Π(y − l), fk,l ∈ R

 , (1)

where

Π(z) =

1 if |z| < 1

2 ,

1
2 if |z| = 1

2 ,

0 if |z| > 1
2 .

(2)

2 Introduction

In many scientific and engineering disciplines, the use of Fourier techniques to process
data is pervasive and fundamental. With the advent of computers in the 1960s, the
algorithm nowadays known as the Fast Fourier Transform (FFT), first discovered by
Karl Friedrich Gauss in 1805, and later rediscovered by James W. Cooley and John
W. Tukey in 1965 [4, 5], has become a workhorse for all sorts of applications.

1

The FFT, which computes discrete Fourier transforms (DFTs), is notably used
in areas of spectral analysis and signal processing. However, numerous applications
involve unevenly spaced data, whereas the FFT requires that input data be tabulated
on a uniform grid [6].

For example, the Magnetic Resonance Imaging (MRI) technique generates spectral
data in a non-uniform grid; and from this data, an image is to be produced. For
this project, we are interested in studying the techniques that make this possible, and
study how they are related to the FFT. In particular, we are interested in techniques
to reconstruct images from non-uniformly sampled spectral data.

3 Images and their Fourier transform

As we mentioned in the introduction, we are interested in algorithms that reconstruct
images from non-uniform spectral data. For example, some MRI machines produce
spectral data mapped onto interleaving spirals [3]. As mentioned above briefly, the
standard FFT algorithm requires evenly spaced data as its input. How is one to
reconstruct spatial data from non-uniform spectral data?

3.1 What is an image?

We will adopt the following model for a black and white image. Suppose you have a
square image of N by N pixels, and we will think of it as a patchwork of square tiles
of unit area 1, each colored with a different tone of gray. See, for example, figure 1.

Figure 1: An image represented by the sum of step wise functions.

2

In this case, our image is a 16 by 16 square with a grayscale of 256 total different
values graded from 0, the blackest; to 1, the brightest.

We have then that an image can be represented by a function f = f(x, y) in the
Cartesian plane R2 as:

f(x, y) =
∑
k,l

fk,lχk,l(x, y), (3)

where k, l ∈ {0, . . . , N − 1}, fk,l ∈ R, and χk,l(x, y) is the characteristic function of the
square �k,l = [k − 1/2, k + 1/2)× [l − 1/2, l + 1/2); that is,

χk,l =
{

1 if (x, y) ∈ �k,l,
0 otherwise.

(4)

Note that the square �k,l is the unit square centered around the point with integer
coordinates (k, l) 1.

3.2 Fourier transform of an image

We can define the Fourier transform of an image f = f(x, y) in the following way:

f̂(σ, γ) =
∫

R2

f(x, y)e−2πi(xσ+yγ)dxdy. (5)

If we consider functions f as defined in 3.1, we then obtain

f̂(σ, γ) =
∫

R2

∑
k,l

fk,lχk,l(x, y)e−2πi(xσ+yγ)dxdy

=
∑
k,l

∫
R2

fk,lχk,l(x, y)e−2πi(xσ+yγ)dxdy

=
∑
k,l

∫ l+1/2

l−1/2

∫ k+1/2

k−1/2
fk,le

−2πi(xσ+yγ)dxdy

=
∑
k,l

fk,l

∫ k+1/2

k−1/2
e−2πixσdx

∫ l+1/2

l−1/2
e−2πiyγdy, (6)

with k, l ∈ {0, . . . , N−1}, for an N by N image. We pause for a moment, and introduce
the rectangle function Π defined as follows,

Π(x) =

1 if |x| < 1

2 ,

1
2 if |x| = 1

2 ,

0 if |x| > 1
2 .

(7)

Lets compute Π̂ as this will help simplify further equation 6:

1This represents a change from the original setup where �k,l = [k, k + 1)× [l, l+ 1), which simplifies the
formulas some.

3

Figure 2: Graph of the rectangle function Π.

Π̂(γ) =
∫ ∞
−∞

Π(x)e−2πixγdx

=
∫ 1

2

− 1
2

e−2πixγdx (8)

=
1

−2πiγ
e−2πixγ

∣∣∣ 12
x=− 1

2

=
1

−2πiγ
(
e−πiγ − eπiγ

)
=

sin(πγ)
πγ

:= sincπ(γ). (9)

Note that the right hand side of equation 8 is remarkably similar to both integrals
in the right hand side of equation 6. In fact they are identical modulo a translation
by k and l in x and y respectively. This is not surprising as we are dealing with the
multiplication of translates of the rectangle function.

Here is where we can introduce and verify the following well known fact of the
Fourier transform. If f(x) ↔ f̂(γ), then f(x − a) ↔ e−2πiaγ f̂(γ). Coming back to
equation 6 we obtain:

4

f̂(σ, γ) =
∑
k,l

fk,l

∫ k+1/2

k−1/2
e−2πixσdx

∫ l+1/2

l−1/2
e−2πiyγdy

=
∑
k,l

fk,l

∫ 1
2

− 1
2

e−2πi(x′+k)σdx′
∫ 1

2

− 1
2

e−2πi(y′+l)γdy′

=
∑
k,l

fk,l

(
e−2πikσ

∫ 1
2

− 1
2

e−2πix′σdx′
)(
e−2πilγ

∫ 1
2

− 1
2

e−2πiy′γdy′
)

=
∑
k,l

fk,le
−2πikσsincπ(σ)e−2πilγsincπ(γ). (10)

Summarizing our results from this section, we then have that if

f(x, y) =
∑
k,l

fk,lχk,l(x, y), (11)

then

f̂(σ, γ) =
∑
k,l

fk,le
−2πikσsincπ(σ)e−2πilγsincπ(γ)

= sincπ(σ)sincπ(γ)
(∑

k,l

fk,le
−2πikσe−2πilγ

)
, (12)

where k, l ∈ {0, . . . , N − 1}, fk,l ∈ R, χk,l(x, y) is the characteristic function of the
square �k,l = [k− 1/2, k+ 1/2)× [l− 1/2, l+ 1/2), and sincπ is as defined in equation
9.

Observing that when m,n ∈ Z

e−2πik(σ+m)e−2πil(γ+n) = e−2πikσe−2πilγ , (13)

we obtain from equation 12 that the quotient

f̂(σ +m, γ + n)

f̂(σ, γ)
=

sincπ(σ +m)sincπ(γ + n)
sincπ(σ)sincπ(γ)

, (14)

or, equivalently,

f̂(σ +m, γ + n) =
sincπ(σ +m)sincπ(γ + n)

sincπ(σ)sincπ(γ)
f̂(σ, γ). (15)

Therefore, f̂(σ+m, γ+n)/f̂(σ, γ) is independent of the values {fk,l}, and knowing
f̂ in the unit square [0, 1)× [0, 1) ⊂ R̂2 determines the value of f̂ in all of R̂2, i.e., we
only need to know what goes on in the unit square to know what goes on in all the
plane.

5

4 Theory for solution to the image reconstruc-

tion problem

Let us revisit the definition of an image from section 3.1. We had established that we
could think of a black and white image as the sum of piecewise constant functions, as
described in equation 3.

Lets relabel the square tiles that make the image in a new alphabetical order, and
rewrite f using this new index, say

f(x, y) =
∑
j

fjχj(x, y), (16)

where this new alphabetical ordering imposes a natural bijection j 7→ (kj , lj) = (k, l),
where fj = fk,l and χj = χk,l, for some k, l ∈ {0, . . . , N − 1} as before; and j ∈
{0, . . . N2 − 1}. Using this notation, we can also rewrite the Fourier transform of f as

f̂(σ, γ) =
∑
j

fje
−2πikjσsincπ(σ)e−2πiljγsincπ(γ), (17)

or, equivalently,

f̂(σ, γ) = sincπ(σ)sincπ(γ)

∑
j

fje
−2πikjσe−2πiljγ

 . (18)

If we call for simplicity

aj(σ, γ) = sincπ(σ)sincπ(γ)e−2πikjσe−2πiljγ , (19)

then we can write equation 17 as

f̂(σ, γ) =
∑
j

fjaj(σ, γ). (20)

Now assume that we have an image g ∈ L(R2) = {f : R2 → R :
∫

R2 |f(x, y)|dxdy <
∞}2 with Fourier transform ĝ. Assume that we have sampled in the spectral domain
M values of ĝ at {(σi, γi) ∈ R̂2 : i = 0, . . . ,M − 1}, say ĝ(σi, γi) = bi.

If we would like to reconstruct g from this data with a piecewise constant function f
at a resolution of N by N pixels, we should satisfy —using equation 20— the following
equality for all i ∈ {0, . . . ,M − 1}:

f̂(σi, γi) =
N2−1∑
j=0

fjaj(σi, γi) = bi. (21)

In matrix notation, this is equivalent to writing

2This condition guarantees that ĝ(σ, γ) =
∫ ∫

g(x, y)e−2πi(xσ+yγ)dxdy exists.

6

a0(σ0, γ0) a1(σ0, γ0) . . . aN2−1(σ0, γ0)
a0(σ1, γ1) a1(σ1, γ1) . . . aN2−1(σ1, γ1)

...
...

...
a0(σM−1, γM−1) a1(σM−1, γM−1) . . . aN2−1(σM−1, γM−1)

f0

f1
...

fN2−1

 =

b0
b1
...

bM−1

(22)

or, equivalently,

Af = b, (23)

where A is the M by N2 matrix that captures the geometry of the sampled points in
the spectral domain, f is the N2 by 1 vector of the reconstruction image coefficients,
and b is the M by 1 vector of spectral data values sampled at the geometric locations
coded into A.

If we had M = N2, the image reconstruction problem would boil down to solving
the linear system of equations 23. However, we will most likely have M ≥ N2, and
system 23 will be overdetermined.

In this case, we proceed by premultiplying equation 23 by A∗, the conjugate trans-
pose of A. The linear system of equations then becomes

(A∗A)f = A∗b. (24)

Since A∗A is clearly Hermitian, and every Hermitian matrix is also normal, the
finite-dimensional spectral theorem applies. This gives that A∗A = QDQ∗ for some
unitary matrix Q, and some real diagonal matrix D = diag(λ1, . . . , λN2). Since QDQ∗

is a similarity transformation of D, and the eigenvalues of D are clearly {λ1, . . . , λN2},
the eigenvalues of A∗A are also {λ1, . . . , λN2}. Hence, A∗A has real eigenvalues, and
provided non of them is zero, we then have that A∗A is invertible, giving the following
solution to our image inversion problem

f = (A∗A)−1A∗b. (25)

It turns out that if the columns of A are linearly independent, then A∗A is invertible
[2]. Moreover, if the sampling occurs on a random pattern, it can be shown that with
probability one A∗A is invertible [1].

The matrix (A∗A)−1A∗ is called the Moore-Penrose pseudoinverse of A, and it will
give the solution to equation 23 in the least squares sense [7, 9], that is

‖Af − b‖2 = min
x
‖Ax− b‖2. (26)

5 Algorithms for image reconstruction from spec-

tral data

If we wanted to reconstruct an image at a resolution of 32 by 32 pixels, for example,
we would need a matrix A of at least dimensions 322 by 322. That is, we would need
storage for 324 or 1,048,576 floating point numbers. In general, for an image resolution
of N by N , we would need O(N4) storage. This means that the algorithm we choose
should be able to do its job without storing A, or A∗A, explicitly.

7

5.1 The Singular Value Decomposition, insights and re-
sults

Recall from equation 26 that f is the solution of minimum norm to the least squares
problem

min
x
‖Ax− b‖2. (27)

It can be proven that a matrix A of dimensions M by N2 can be written as A =
UΣV ∗, where U has dimensions M by M , V has dimensions N2 by N2, both U and
V are unitary matrices, and Σ is an M by N2 matrix having only non-zero elements
in the main diagonal and they are non-negative real numbers σ1 ≥ σ2 . . . ≥ σN2 ≥ 0,
called the singular values of A [8].

Observe that

A∗A = (UΣV ∗)∗UΣV ∗

= (V ΣU∗)UΣV ∗

= V Σ2V ∗. (28)

Since V is a unitary matrix, the right hand side of equation 28 is a similarity transfor-
mation, therefore the eigenvalues of A∗A coincide with those of Σ2, which are exactly
σ2

1 ≥ σ2
2 . . . ≥ σ2

N2 ≥ 0. Hence, A∗A is positive semidefinite.
Now, back to our minimization problem given by equation 27. If we call r = Ax−b,

then

‖r‖2 = r∗r

= (U∗r)∗(U∗r)

= ‖U∗r‖2

= ‖U∗Ax−U∗b‖2

= ‖ΣV ∗x− c‖2, (29)

where cj = u∗jb, j = 1, . . . ,M and uj is the jth column of U . Now, by letting w = V ∗x,
equation 29 is equivalent to

‖r‖ =2 (σ1w1 − c1)2 + . . .+ (σnwn − cn)2 + c2n+1 + . . .+ c2m. (30)

Therefore, minimizing the norm of r is equivalent to minimizing the right hand side
of 30. This gives the following algorithm to solve equation 27.

1. Compute c = U∗b

2. Let p be the number of nonzero singular values of A

3. for j = 1, . . . , p

Set wj = cj/σj

end

8

4. The minimum norm solution is x = V (:, 1 : p)w
The norm of the residual is (cp+1 + . . .+ cm)1/2

Even though this algorithm would produce the right answer for our problem, it has
the following caveat. It requires the computation of the SVD decomposition of A and
storage of U and V , which can be very large and dense. Therefore, we need a low
storage algorithm.

5.2 Conjugate gradient method, a low storage solution

We say that a set V = {vj ∈ Cn : j = 1, . . . , n} is conjugate with respect to an n by n
Hermitian positive definite matrix B, or B-conjugate, if

v∗jBvk = 0 if and only if j 6= k. (31)

Assume that we are given an A∗A-conjugate set V, and that we want to solve
equation 24. Consider f of the form

f =
n∑
j=1

αjvj , with vj ∈ V, (32)

then, substituting f into 24 and premultiplying by v∗k both sides of that equation we
obtain

v∗kA
∗Af = v∗kA

∗b

v∗kA
∗A

n∑
j=1

αjvj = v∗kA
∗b

n∑
j=1

αjv
∗
kA
∗Avj = v∗kA

∗b

αkv
∗
kA
∗Avk = v∗kA

∗b, (33)

from which

αk =
v∗kc

v∗kA
∗Avk

for k = 1, . . . , n, (34)

where we have set c = A∗b, and provided v∗kA
∗Avk is not zero. This means that if we

obtain an A∗A-conjugate set V we can solve with 34 our least squares problem. This
is the theoretical basis for the conjugate gradient algorithm [10, 12]. The algorithm
basically minimizes (1/2)x∗Bx−x∗c, where B is a Hermitian positive definite matrix.
In our case, based on the results of section 5.1, we have that A∗A is at least positive
semidefinite. However, it is known that with probability one A∗A is positive definite
for a randomly sampled spectral data set, see for example [1], and therefore we can
assume that this is the case in general. The algorithm has the advantage that we do
not have to explicitly store A∗A, but be able to compute A∗Ax for arbitrary vectors
x. Consider equation 24, then the conjugate gradient method algorithm translates into

1. Given x(0), form r(0) = b−A∗Ax(0), s(0) = r(0).

9

2. for k = 0, 1, . . . until convergence

Let z(k) = A∗As(k)

Let the step length be α(k) = (r(k)∗s(k))/(s(k)∗z(k))
Let x(k+1) = x(k) + α(k)s(k)

Update the negative gradient r(k+1) = r(k) − α(k)z(k)

Let β(k+1) = (r(k+1)∗r(k+1))/(r(k)∗r(k))
Let the new search direction be s(k+1) = r(k+1) + β(k+1)s(k)

6 Experiments and validation

To test and validate our model and algorithms, we conducted several experiments. We
built code to implement both the direct solution of the system of equations 23 as well
as the solution by Conjugate Gradient. The figures referred to in this section are in
the appendices. We describe the different sets of experiments conducted next.

6.1 Proof of concept

The first experiment we conducted was the proof of concept. We took a 16 x 16
resolution image and set out to recreate a same resolution image from spectral data.
To this effect, we built explicitly the matrices in equation 25 to find the image from
the full spectral data, that is, we sampled on a regular grid in the spectral domain
256 points. Figure 3 shows the original image. On figure 4 we can see that the
reconstruction by this method reproduces exactly the original. The error was within
machine precision.

10

Figure 3: Proof of concept: original 16 x 16 image.

Figure 4: Proof of concept: reconstruction at 16 x16 resolution.

Another set of experiments we conducted, still using the direct solution of the full

11

system of equations explicitly, consisted of the following. We took a high resolution
image from our image database, conducted a series of closest-neighbor-averaging to
down sample in the spatial domain the original high resolution image, and then we used
spectral information from the high resolution image to obtain an image reconstruction
at the same low resolution than that of the down-sampled original, and compared the
results.

In figure 5, we show one of the three 512 x 512 high resolution images that we used
for this second set of experiments. In figure 6 we can see the result of down-sampling in
the spatial domain the original high resolution image four times. Then, using the high
resolution image to obtain the spectral data, we sampled the frequency information
on a regular grid in the spectral domain. The area of the spectral domain used was
the unit square, given that all the information is contained therein, as concluded from
equation 15.

The reconstruction can be seen in figure 7. We note that the agreement is not
within machine precision error, as corroborated in figure 8. This is because the effects
of closest-neighbor-averaging on the Fourier transform are not the same as the spectral
sampling from the high quality image but for a small correction.

Figure 5: One of the 512 x 512 high resolution images used in the second set of
experiments.

12

Figure 6: Image down-sampled in the spatial domain to 32 x 32 pixels from a 512
x 512 resolution.

Figure 7: Reconstruction from high resolution image spectral data on a regular
grid.

13

Figure 8: Error between the down-sampled image and the reconstructed image.

These experiments prove that the theory developed so far works. However, the
direct solution of the system of equations 23 has the caveat that it is memory intensive.
For example, consider trying to reconstruct an image at 64 x 64 bits of resolution. This
would require a storage of at least 644 complex numbers when forming A∗A. This leads
us to the implementation of the Conjugate Gradient method.

6.2 The Conjugate Gradient method experiments and re-
sults

Our implementation of the Conjugate Gradient method (CG) is taken from modifying
the one described in [10], p. 50, but without the restart step. To implement this
algorithm we had to create two functions, A times() and A star times() in Matlab,
that return –given the proper input– the products of A or A∗, respectively, with a
given vector.

The third set of experiments that we carried over were geared towards implementing
and understanding the behavior of the CG method when the reconstructed image had
the same resolution as the original. This would validate the implementation of the CG
algorithm.

We selected an image of size 16 x 16 and reconstructed a 16 x 16 image using data
taken on a 16 x 16 grid in the spectral domain at regular intervals in the unit spectral
square. Figures 9 through 14 show the progressive approximation to the original image
as the tolerance parameter in the CG code went from 10−1 to 10−6. The images are
represented in linear form as vectors thus plotted. The original image is painted in
blue, the reconstruction in red. We repeated this experiment for images of sizes 32 x

14

32, 64 x 64, and 128 x 128 with identical results.
The spectral data for the runs in this experiment was produced using A and the

fact that Af = f̂ . To guarantee that the method worked by providing spectral data
in a way other than by this artifact, we ran the next experiment.

Figure 9: Approximation of the CG solution, in red, to the original image, in
blue. Tolerance 1e-1, N=16.

15

Figure 10: Approximation of the CG solution, in red, to the original image, in
blue. Tolerance 1e-2, N=16.

Figure 11: Approximation of the CG solution, in red, to the original image, in
blue. Tolerance 1e-3, N=16.

16

Figure 12: Approximation of the CG solution, in red, to the original image, in
blue. Tolerance 1e-4, N=16.

Figure 13: Approximation of the CG solution, in red, to the original image, in
blue. Tolerance 1e-5, N=16.

17

Figure 14: Approximation of the CG solution, in red, to the original image, in
blue. Tolerance 1e-6, N=16.

The fourth set of experiments consisted of a similar setup as in the previous set,
but this time the spectral data was obtain directly from the Fourier transform of the
original image by virtue of the FFT and sincπ functions as follows.

From equation 18, and setting σ = l/N and γ = m/N , we get

f̂

(
l

N
,
m

N

)
= sincπ

(
l

N

)
sincπ

(m
N

)∑
j

fje
−2πikj

l
N e−2πilj

m
N

 , (35)

where N is the image resolution, assuming the image is square, and l,m = 0, . . . , N−1.
It is easy to identify the right hand side of equation 35 as an entry in the matrix that
results from the entry-wise product of the FFT2 matrix of the original image and a
sincπ matrix Sπ(N) defined as follows:

Sπ(N) = (sincπ(0), . . . , sincπ(N − 1))T × (sincπ(0), . . . , (sincπ(N − 1)), (36)

then

f̂

(
l

N
,
m

N

)
=
(
Sπ(N)� FFT2(Matrix form of f)

)
m,l
, (37)

where the subscript m, l in the right hand side denotes the element in row m and column
l of the entry-wise matrix product. Note that m and l switched places. This is due
to the definition of FFT2. The advantage of computing f̂ this way is the considerable
speedup that the FFT2 brings, compared to obtaining it by doing the product Af . A
one-dimensional example can be seen in the following figure

18

Figure 15: Fourier transform approximation by the DFT as implemented in the
FFT of a piece-wise constant function. Note that even though the title
and legend in the picture just mention the DFT, there is the entry-wise
product by the respective sincπ matrix that needs to be performed to
compare with the analytic Fourier transform (FT), which was done
here.

Coming back to the description of the results of the fourth set of experiments we
repeated the set of experiments described in the third set of experiments, but this time,
we used the results above to generate from the original image the spectral data set.
Figures 16 to 19 show that the algorithms work in this case too.

19

Figure 16: Original image to test the approximation of the Fourier transform by
the Sπ � FFT2 matrix. The resolution is 16 x 16.

Figure 17: Reconstruction via Conjugate Gradient with a tolerance of 1e-1,
N=16.

20

Figure 18: Reconstruction via Conjugate Gradient with a tolerance of 1e-2,
N=16.

Figure 19: Reconstruction via Conjugate Gradient with a tolerance of 1e-4,
N=16.

21

Finally, the fifth and last experiment we conducted takes a 16 x 16 image, pads it
with zeros to the right and to the bottom to obtain a 32 x 32 image. Using this higher
resolution image, we obtained its Fourier transform and sampled spectral data to form
a 256 x 1 spectral data vector to feed into our CG algorithm and reconstruct a 16 by
16 image with it. The tolerance used for these experiments in the CG algorithm was
10−3.

The original image was a “delta” function, that is, it is a function that is zero
except at a point, where it takes the maximum value possible in our color map which
is 255, in this case, given that the color map values range from 0 to 255. Figure 20 is
the original image.

Figure 21 is the result of sampling the top left 16 x 16 sub-matrix of the spectral
domain. This would correspond to all the lowest frequencies, or a low pass filter.

Figure 22 is the result of sampling the bottom right 16 x 16 sub-matrix of the
spectral domain. This would correspond to all the highest frequencies, or a high pass
filter.

Figure 23 this is similar to the previous two cases except that in this case we sampled
every other frequency.

Finally, figure 24 is the result of random sampling on the spectral domain of the
available frequency points.

Figure 20: Original “delta” function for a 16 x 16 grid.

22

Figure 21: Reconstruction via Conjugate Gradient with a tolerance of 10−3,
N=16, low pass filter.

Figure 22: Reconstruction via Conjugate Gradient with a tolerance of 10−3,
N=16, high pass filter.

23

Figure 23: Reconstruction via Conjugate Gradient with a tolerance of 10−3,
N=16, every other frequency sampled.

Figure 24: Reconstruction via Conjugate Gradient with a tolerance of 10−3,
N=16, random frequency sampling.

24

We observe that the best reconstruction is given by sampling regularly every other
frequency, but that the second best reconstruction of the image is obtained by sampling
randomly the spectral domain grid.

7 Performance results

We now present some performance and memory usage results for the experiments
conducted with the Conjugate Gradient method.

Figure 25: Time of one iteration vs image size.

25

Figure 26: Runtime vs precision.

Figure 27: Number of iterations vs precision.

26

Figure 28: Computation time vs precision.

Figure 29: Combined convergence and time results.

27

Figure 30: Memory usage.

8 Project debriefing

In this section we compare the objectives that we had set to achieve during the early
planning and goal setting stages of this project with what was actually achieved.

The objective of this project was to implement the algorithms described in the
previous sections, carry out the experiments for their validation, and test performance
on a database.

We list the original points that needed to be tested or validated in italics, and we
comment on the status after completion of the project shortly afterwards.

• For the conjugate gradient method to work, we need to guarantee that A∗A is
positive definite. We need to research this fact.
This important theoretical requirement necessary for the existence of a solution to
equation 24 was addressed in [1]. We would like to thank Radu Balan for pointing
out this article to us. This article basically says that this system of equations
has a solution with probability one for a large enough random sampling of the
spectral domain.

• We need to be able to compute in an efficient way the Fourier transform of the
high resolution images that we’ll use to create the data to run our experiments
on. We need to study how to do this.
This is also something that we accomplished to do. The result was derived from
studying the form of equation 18 and reflected in the comments surrounding
equations 35, 36, and 37

• We need to find a metric that measures how good our reconstruction is compared
to the downsampled versions of the high resolution images. We will use the `1

28

and `2 norms to measure the reconstruction error.
I have to thank Aleksey Zimin who suggested I talk to Christopher Miller about
this issue given that Chris had done work regarding image processing. Chris
suggested to take a look at [11]. Unfortunately we did not have a chance to
implement the measures described in that reference to compare the goodness of
the reconstructions described in our project. This will be in the list of things
to do. We simply performed `2 norm of the residues and visual inspections for
goodness of the reconstruction rating.

Our list of goals continued: “After this theoretical and practical details are worked
through, we have to implement the conjugate gradient algorithm proposed. We will
use Matlab for that purpose, and if time permits, port our code to C/C++.”

We indeed produced Matlab code that implemented both the direct and Conjugate
Gradient methods to test our theoretical framework. Unfortunately we ran out of time
and the C/C++ implementations were not realized.

We further stated the following objectives for the code:

• Show that the theoretical framework does work by writing code that can generate
low resolution reconstructions

• Implement code that can generate higher resolution reconstructions
The experiments described in this paper worked for both low and high resolu-
tion images as expected for both the direct and Conjugate Gradient methods.
However, the code as currently implemented is not efficient and more detail ex-
periments for higher resolution images were very limited due to the computation
times involved. The methodology described around equations 35, 36, and 37 will
probably hold the key to efficiency.

• Write code to measure how good the reconstructions are compared to the originals
This issue was addressed above.

9 Conclusions and future work

We successfully implemented and tested our methodology. We showed that both the
direct and the Conjugate Gradient methods recreate adequately images from spectral
data provided we use an adequate number of sample points in the spectral domain and
that these points are either relatively uniformly-spaced, or sampled randomly.

We had success in recreating images at the same resolution as the original and
using the full spectral information, or using partial spectral information on a finer
grid, but we encountered some difficulties when sampling directly a high resolution
image and then trying to obtain a lower resolution image from that information. We
don’t understand yet why this is so, and it is one of the issues to explore in the future.

We also managed to reconstruct an image of 128 x 128 pixels at a tolerance of
10−1. The most important thing to mention is that the memory requirements for the
CG gradient method made this possible, and this was one of the initial motivations of
this project.

However, we also established that unless we do something to speed up the multi-
plication of A and a vector, or A∗ and a vector, both used in our CG algorithm, the
practical limitations that this imposes on our methodology would limit its usefulness

29

to the reconstruction of images at 64 x 64 pixels of resolution.This would be one of the
areas to explore that would dramatically improve the results presented here.

Finally, we want to refer back to the items in the previous section that were not
completed as paths to future work.

The experiments described herein were conducted on a MacBook Pro with a single
2.16 GHz Intel Core 2 Duo processor, with 2 GB 667 MHz DDR2 SDRAM, and running
Matlab version 7.4.0 (R2007a).

I would like to express thanks to the instructors of AMSC 663/664 Radu Balan
and Aleksey Zimin for their thoughtful and useful comments reflected in the contents
of this work, and to my advisor John J. Benedetto.

References

[1] R. F. Bass and K. Gröchenig, Random sampling of multivariate trigonometric
polynomials, SIAM Journal on Mathematical Analysis, 36 (2005), pp. 773–795.

[2] A. Ben-Israel and T. N. E. Greville, Generalized Inverses, Springer-Verlag,
2003.

[3] J. J. Benedetto and P. J. S. G. Ferreira, Modern Sampling Theory: Math-
ematics and Applications, Birkhäuser, 2001.

[4] J. W. Cooley, The rediscovery of the Fast Fourier Transform algorithm,
Mikrochim. Acta [Wien], III (1987), pp. 33–45.

[5] J. W. Cooley and J. W. Tukey, An algorithm for the machine computation
of complex fourier series, Math. Comp., 19 (1965), pp. 297–301.

[6] A. Dutt and V. Rokhlin, Fast Fourier Transforms for nonequispaced data, II,
Applied and Computational Harmonic Analysis, 2 (1995), pp. 85–100.

[7] E. H. Moore, On the reciprocal of the general algebraic matrix, Bulletin of the
American Mathematical Society, 26 (1920), pp. 394–395.

[8] D. P. O’Leary, Scientific computing with case studies. Book in preparation for
publication, 2008.

[9] R. Penrose, On best approximate solution of linear matrix equations, Proceedings
of the Cambridge Philosophical Society, 52 (1956), pp. 17–19.

[10] J. R. Shewchuk, An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain, 1/4 ed., August 1994.

[11] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality
assessment: From error measurement to structural similarity, IEEE Transactions
on Image Processing, 13 (2004), pp. 1–14.

[12] Wikipedia. http://en.wikipedia.org/wiki/Conjugate gradient method.

30

